Towards highest peak intensities for ultra-short MeV-range ion bunches
نویسندگان
چکیده
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 10(8) protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
منابع مشابه
Stability of Ion Acceleration in a Plasma Dominated by the Radiation Pressure of an Electromagnetic Pulse
The electric fields produced by the interaction of ultra-short and ultra-intense laser pulses with a thin target make it possible to obtain multiMeV , high density, highly collimated proton and ion beams with duration in the sub-picosecond range. Critical features are the efficiency of the ion acceleration process and the energy spectrum of the produced ion beam. At high laser intensities the r...
متن کاملControl of proton energy in ultra-high intensity laser-matter interaction
Recent breakthroughs in short pulse laser technology resulted in (i) generation of ultrahigh intensity (2x10 W/cm) and (ii) ultra-high contrast (10) short pulses at the Hercules facility of the University of Michigan, which has created the possibility of exploring a new regime of ion acceleration – the regime of Directed Coulomb Explosion (DCE). In this regime of sufficiently high laser intensi...
متن کاملTerahertz radiation from laser accelerated electron bunches
Coherent terahertz and millimeter wave radiation from laser accelerated electron bunches has been measured. The bunches were produced by tightly focusing ~spot diameter '6 mm) a high peak power ~up to 10 TW!, ultra-short (>50 fs) laser pulse from a high repetition rate ~10 Hz! laser system ~0.8 mm!, onto a high density (.10 cm) pulsed gas jet of length '1.5 mm. As the electrons exit the plasma,...
متن کاملLongitudinal Diagnostics for Short Electron Beam Bunches∗
Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection...
متن کاملDetailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma
Ion acceleration from intense (Iλ(2) > 10(18) Wcm(-2) μm(2)) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015